Synthesis of 3-Hydroxy-5-oxonene via 2,3-Epoxy-5-oxonene Kenshu Fujiwara, Misa Tsunashima, Daisuke Awakura, and Akio Murai* Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060 (Received March 27, 1997; CL-970223) Synthesis of 2r, 3t, 9t- and 2r, 3t, 9c-2, 9-diethyl-3-hydroxy-5-oxonenes was achieved by the reduction of 2, 9-diethyl-2, 3-epoxy-5-oxonene which was prepared from 2, 9-diethyl-2, 5-oxonadiene and dimethyldioxirane. Stereoselective conversion of these 3-hydroxy-5-oxonenes was also described. Development of the general method for synthesis of 5-oxonene structure, which is often seen in marine natural products, such as isolaurallene, ¹ neolaurallene, ² and obtusenynes, ³ is now one of the important subjects for synthetic chemists. ⁴ As part of our studies on the total synthesis of the above natural products, ⁴ we describe here the facile synthesis of monocyclic 3-hydroxy-5-oxonene and its stereoselective conversion. Our plan for 2-step construction of 3-hydroxy-5-oxonene structure 1 from 2, 5-oxonadiene 3 is shown in Scheme 1:⁵ alcohol 1 would be given by the reduction of 2, 3-epoxy-5-oxonene 2 which could be produced by the epoxidation of dienol ether 3 with dimethyldioxirane⁶ under neutral conditions. Here, some questions existed: 1) does epoxidation occur at the 2-position of monocyclic 3 selectively?; ⁵ 2) is epoxide 2 stable enough to handle?; 3) how is the stereoselection in epoxidation step and reduction step? We intended to answer these questions. The epoxidation of dienol ether 3⁷ with dimethyldioxirane was performed in the following way (Scheme 2). Anhydrous dimethyldioxirane solution in acetone (1.5 eq.) was added dropwise to a solution of 3 in co-solvent (CH2Cl2 or Et2O) (acetone/co-solvent=1:1) at -70 °C. After 10 min, the temperature was raised at -40 °C and maintained for 10 min. Then, 2methyl-2-butene⁸ was added to the reaction mixture to quench unreacted dimethyldioxirane. After solvent removal at 0 °C in vacuo (20 Torr), a crude mixture of 2, 3-epoxy-5-oxonenes 49 and 59 was given as an almost pure form. Under the conditions, epoxidation occurred at the 2-position selectively.4c Although both epoxides were unstable to silica gel and could not be detected by TLC, they could be observed by ¹H NMR. ⁹ Major epoxide 4 was stable in neutral solution at 20 °C for several hours. On the other hand, minor 5 was converted to enol ether 6 spontaneously and cleanly in CH₂Cl₂, CDCl₃ and benzene-d₆ at 20 °C, and the conversion was completed in all cases within 30 min. Accordingly, the mixture of epoxides required quick handling at low temperature (below 0 °C). The stereoselectivity in epoxidation varied with co-solvent. The ratio of 4 to 5 which could be estimated accurately by ¹H NMR after complete conversion of 5 to 6 in CH₂Cl₂ at 20 °C was higher in CH₂Cl₂ (5:1) than in Et₂O (2.7:1). The stereochemistry of 4 and 5 was unknown at this stage. Next, we examined the conversion of epoxides 4 and 5 to 3-hydroxy-oxonenes. Among the several attempts to reduce the epoxides, only DIBAH gave the desired products. The immediate reaction of the mixture of 4 and 5 prepared in Et₂O-acetone with DIBAH in CH₂Cl₂ at 0 °C gave oxonenes 7 and 8 in 20% and Scheme 2. Reagents and conditions: a) dimethyldioxirane (1.5 eq), acetone-co-solvent (1:1), -70 °C, 10 min, then -40 °C, 10 min, then 2-methyl-2-butene (1.5 eq), 5 min, then solvent removal at 0 °C in vacuo (20 Torr); b) CH_2Cl_2 , 20 °C, 1 h; c) DIBAH (4 eq), hexane- CH_2Cl_2 (1:1.6), -75 °C, 10 min, then 0 °C, 6.5 h; d) DIBAH (4 eq), hexane- CH_2Cl_2 (1:1.6), -75 °C, 10 min, then 0 °C, 21 h, 18% (from 3), (a 5:1 mixture of 4 and 6 was used.). 16% yields from 3, respectively, together with a small amount of oxocene 9. 10,11 On the other hand, the epoxides prepared in CH_2Cl_2 -acetone produced 7 and 8 in 28% and 2% yields, respectively, under the same conditions. 10 The product ratio of 7 and 8 seemed to correspond to the ratio of starting 4 and 5, respectively. Indeed, when the mixture of epoxides was treated with DIBAH after complete conversion of 5 to unreactive 6, 7 was given as only oxonene product from 4.10 The stereochemistry of 7 and 8^{4j} was determined by ¹H NMR. Furthermore, the structure of 7 was confirmed by X-ray crystallographic analysis after conversion to the crystalline pbromobenzoate. The preference of β -attack in the epoxidation step was clarified at this time. Interestingly, the hydride substitution at C-2 of both 4 and 5 occurred in the same side to the oxygen of epoxide in the reduction step. Scheme 3. Reagents and conditions: a) (COCl)2, DMSO, CH₂Cl₂, -78 °C, 20 min, then Et₃N; b) DBU (5 eq), benzene, reflux, 96 h; c) L-Selectride (3 eq), THF, -78 °C, 20 min, then 20 °C, 45 min. Then, stereochemical conversion of 7 and 8 was examined (Scheme 3). Swern oxidation of 7 and 8 gave ketones 10 and 11, respectively. The treatment of 10 with DBU in refluxing benzene induced complete epimerization at the 2-position (>99:1) to give thermodynamically stable 11 in 82% yield without olefin migration. 12 Reduction of ketones 10 and 11 with L-Selectride produced only 2, 3-cis-3-hydroxy oxonenes 12 and 13 in good yield, respectively. ¹³ Thus, all four diastereomers of 2, 9-diethyl-3-hydroxy-5-oxonene were prepared from dienol ether 3. In conclusion, facile 2-step synthesis of 3-hydroxy-5oxonenes 7 and 8 from dienol ether 3 via 2, 3-epoxy-5-oxonenes ${\bf 4}$ and ${\bf 5}$ was accomplished. The usage of ${\rm CH_2Cl_2}$ as co-solvent in epoxidation step heightened the ratio of 4 to 5. The stereoselective conversion of 7 and 8 to 12 and 13 was also achieved. ## References and Notes - K. Kurata, A. Furusaki, K. Suehiro, C. Katayama, and T. Suzuki, Chem. Lett., 1982, 1031. - M. Suzuki, E. Kurosawa, A. Furusaki, S. Katsuragi, and T. Matsumoto, Chem. Lett., 1984, 1033. - a) T. J. King, S. Imre, A. Öztunc, and R. H. Thomson, Tetrahedron Lett., 1453 (1979); b) B. M. Howard, G. R. Schulte, W. Fenical, B. Solheim, and J. Clardy, Tetrahedron, 36, 1747 (1980); c) Y. Gopichand, F. J. Shumitz, J. Shelly, A. Rahman, and D. van der Helm, J. Org. Chem., 46, 5192 (1981); d) M. Norte, A. G. González, F. Cataldo, M. L. Rodríguez, and I. Brito, Tetrahedron, 47, 9411 (1991). - a) L. E. Overman, T. A. Blumenkopf, A. Castañeda, and A. S. Thompson, J. Am. Chem. Soc., 112, 4988 (1990); d) K. C. Nicolaou, D. G. McGarry, P. K. Somers, B. H. Kim, W. W. Oglivie, J. Am. Chem. Soc., 111, 4988 (1990); d) K. C. Nicolaou, D. G. McGarry, P. K. Somers, B. H. Kim, W. W. Oglivie, G. Yiannikouros, C. V. C. Prasad, C. A. Veale, and R. R. Hark, L. Am. Chem. Soc., 112, 6263 (1990); d) K. C. Nicolaou, D. G. McGarry, P. K. Somers, B. H. Kim, W. W. Oglivie, G. Yiannikouros, C. V. C. Prasad, Am. Chem. Soc., 112, 6263 (1990); d) N. C. A. Veale, and R. R. Hark, L. Am. Chem. Soc., 112, 6263 (1990); d) N. C. A. Veale, and R. R. Hark, L. Am. Chem. Soc., 112, 6263 (1990); d) N. C. A. Veale, and R. R. Hark, L. Am. Chem. Soc., 112, 6263 (1990); d) N. C. A. Veale, and R. R. Hark, L. Am. Chem. Soc., 112, 6263 (1990); d) N. C. A. Veale, and R. R. Hark, L. Am. Chem. Soc., 112, 6263 (1990); d) N. C. A. Veale, and R. R. Hark, L. Am. Chem. Soc., 112, 6263 (1990); d) N. C. A. Veale, and R. R. Hark, L. Am. Chem. Soc., 112, 6263 (1990); d) N. C. A. Veale, and R. R. Hark, L. Am. Chem. Soc., 112, 6263 (1990); d) N. C. Prasad, and W. W. Ogilvie, D. M. R. Hark, L. Am. Chem. Soc., 112, 6263 (1990); d) N. C. Prasad, and M. R. Hark, L. Am. Chem. Soc., 112, 6263 (1990); d) N. C. Prasad, and M. R. Hark, L. Am. Chem. Soc., 112, 6263 (1990); d) N. C. Prasad, and M. W. W. Ogilvie, D. Prasad, and M. R. Hark, L. Am. Chem. Soc., 112, 6263 (1990); d) N. C. Prasad, and M. R. Hark, L. Am. Chem. Soc., 112, 6263 (1990); d) N. C. Prasad, and M. R. Hark, L. Am. Chem. Soc., 112, 6263 (1990); d) N. C. Prasad, and M. R. Hark, L. Am. Chem. Soc., 112, 6263 (1990); d) N. C. Prasad, and M. R. Prasad, and M. R. Prasad, and M. R. Prasad, and Am. C. A. Veale, and R. R. Hark, J. Am. Chem. Soc., 112, 6263 (1990); e) N. R. Curtis, A. B. Holmes, and M. G. Loony, Tetrahedron Lett., 33, 671 (1992); f) N. R. Curtis and A. B. Holmes, Tetrahedron Lett., 33,675 (1992); g) R.W. Carling, J. S. Clark, and A. B. Holmes, J. Chem. Soc. Perkin Trans. 1 1992, 83; h) M. Isobe, C. Yenjai, and S. Tanaka, Synlett, 1994, 916; i) A. Brandes and H. M.R. Hoffmann, Tetrahedron, 51, 145 (1995); j) K. Fujiwara, M. Tsunashima, D. Awakura, and A. Murai, Tetrahedron Lett., 36, 8263 (1995); k) M. Isobe, S. Hosokawa, and K. Kira, Chem. Lett., 1996, 473; l) E. Alvarez, M. Delgado, M. T. Díaz, L. Hanxing, R. Péres, and J. D. Martín, Tetrahedron Lett., 37, 2865 (1996); m) T. Oishi, M. Shoji, K. Maeda, N. Kumahara, and M. Hirama, Synlett, 1996, 1165; n) J. S. Clark and J. G. Kettle, Tetrahedron Lett., 38, 127 (1997); o) M. Inoue, M. Sasaki, and K. Tachibana, Tetrahedron Lett., 38, 1611 (1997). Similar plan for the synthesis of oxepane-fused 3-hydeoxy-5-oxonene was reported by Nicolaou's group, but selective epoxidation of enol ether with dimethyldioxirane was not succeeded. a) R. W. Murray and R. Jeyaraman, J. Org. Chem., 50, 2847 (1985); b) W. Adam, Y.-Y. Chan, D. Cremer, J. Gauss, D. Scheutzow, and M. Schindler, J. Org. Chem., 52,2800(1987);c) Dimethyldioxirane-acetonesolution prepared according to Adam's method was dried with molecular sieves 4 Å before use. Dienol ether 3 was prepared from 1, 2-epoxybutane in 8 steps as follows: Reagents and conditions: a) HC=CCH₂Br, Mg, HgCl₂ (cat.), Et₂O, reflux, then 14, 97%; b) DHP, PTS•H₂O (cat.), CH₂Cl₂, 20 °C, 1.5 h, 97%; c) BuLi (1 eq), THF, -20 °C, 10 min, then 16 (0.5 eq), THF-HMPA (5:1), -20 °C, 2h, then 20 °C, 2 h, 73% (from 16), 45% recovery of 15; d) Lindlar cat., H₂, quinoline-EtOH (1:250), 20 °C, 1 h, 98%; e) 2M HCl-THF (1:1), 20 °C, 5 h; f) NaClO $_2$, NaH $_2$ PO $_4$, 2-methyl-2-butene, t-BuOH-H $_2$ O (3.5:1), 0 $^{\circ}$ C, 1 h, 87% (2 steps); g) EDCI+HCl, DMAP, DMAP+HCl, CHCl $_3$, reflux, 2 days, 72%; h) KHMDS, HMPA, THF, -78 $^{\circ}$ C, 1 h, then PhNTf $_2$ -78 $^{\circ}$ C, 1h, then Et $_2$ CuMgBr, Me $_2$ S, -78 $^{\circ}$ C, 10 min, then -40 $^{\circ}$ C, 16 h, 82%. Thereactivity of 2-methyl-2-butene with dimethyldioxirane was comparable as that of the enol ether part of 3 at -40 °C. Selected ¹H NMR data (400MHz, CDCl₃, 23 °C) for epoxides 4 and 5. Epoxide 4: δ 0.91 (3H, t, J=7 Hz, H2" or 2'), 1.01 (3H, t, J=7 Hz, H2" or 2'), 2.50 (1H, td, J=5, 13 Hz, H4a), 2.57-2.67 (1H, m, H4b), 2.92 (1H, dd, 2.), 2.30 (1H, ut, J=3, 15 Hz, H4B), 2.37-2.67 (1H, llt, H4B), 2.92 (1H, ut, J=5, 9 Hz, H3), 3.56 (1H, tdd, J=4, 7, 10 Hz, H9), 5.60-5.68 (2H, m, H5 and 6); Epoxide 5: 8 0.86 (3H, t, J=8 Hz, H2' or 2''), 0.93 (3H, t, J=8 Hz, H2'' or 2''), 2.35 (1H, brtd. J=7, 13 Hz, H4a), 2.83-2.90 (1H, J=2, 7, 13 Hz, H4b), 3.02 (1H, dd, J=2, 7 Hz, H3), 3.89 (1H, brtdd, J=4, 7, 12 H9), 5.44-5.54 (2H, m, H5 and 6). - 10 There is no other product but a complex mixture of high-polar compounds. Although enol ether 6 was not reacted with DIBAH, 6 was decomposed under work-up conditions. Work-up was done as follows: saturated aqueous potassium sodium tartarate solution was added to the reaction mixture at 0 °C, and the mixture was extracted with Et2O after stirring for 2 hours at 20 °Ć. - 11 Unexpected production of oxocene 9, which was a mixture of diastereomers (3:1~2:1), was probably due to Lewis acidity of DIBAH. When the mixture of epoxides treated with AlMe3 as Lewis acid, ring contracting aldehyde 20 was produced in 35% yield (a mixture of diasteromers), which was reduced with LiAlH₄ to give 9. We wish to describe the rearrangement in detail elsewhere. For aluminum reagent catalyzed rearrangement of epoxide, see: K. Maruoka, S. Nagahara, T. Ooi, and H. Yamamoto, Tetrahedron Lett., 30, 5607 (1989). 12 The same tendency in 2, 8-disubstituted 5-oxocen-3-one system has been reported: T. Masamune and H. Matsue, *Chem. Lett.*, **1975**, 895; Isomerization of 2, 9-disubstituted oxonan-3-one has also been reported. 48 13 The same tendency in 2, 8-disubstituted 5-oxocen-3-one system has been reported: K. Tsushima and A. Murai, Tetrahedron. Lett., 33, 4345 (1992); Cis-selective reduction of 2, 9-disubstituted oxonan-3, 8-dione has also been reported.